°ê¥ß°ª¶¯¤j¾Ç¸ê¤u113¾Ç¦~«×²Ä2¾Ç´Á®Ñ³ø°Q½×º[±MÃDºtÁ¿

°ê¥ß°ª¶¯¤j¾Ç¸ê°T¤uµ{¾Ç¨t

 

¤é´Á

®É¶¡

¦aÂI

Á¿ªÌ

¤º®e

2¤ë13¤é

13:30-15:00

¤u¾Ç°|1FºtÁ¿ÆU

Ĭ®a½÷

¶}¾Ç·Ç³Æ©P

2¤ë20¤é

13:30-15:00

¤u¾Ç°|1FºtÁ¿ÆU

³\µ¤¯ö

¸­«T§Ê

¬x¹Å¶©

Á©Ӧö

³¯®aºÂ

³\µ¤¯ö

Multi-view Enhanced Graph Attention Network for Session-based Music Recommendation

¸­«T§Ê

Lightweight vision image transformer (LViT) model for skin cancer disease classification

¬x¹Å¶©

Robotic Surveillance with Channel State Information for Object Tracking and Counting

Á©Ӧö

TinyML-Based Pothole Detection: A Comparative Analysis of YOLO and FOMO Model Performance

³¯®aºÂ

Fraud-BERT: transformer based context aware online recruitment fraud detection

2¤ë27¤é

13:30-15:00

¤u¾Ç°|1FºtÁ¿ÆU

±ç¤åÃv

¼ÚùÚ¸Î

¬x¹ç¿[

¤ý«aÚ]

¤ýÞ³ÄQ

²øÞm¥Á

• ¬x¹ç¿[

LANGUAGE MODELS ARE REALISTIC TABULAR DATA GENERATORS

•¤ý«aÚ]

DETRs Beat YOLOs on Real-time Object Detection

•¤ýÞ³ÄQ

Privacy Essentials

•±ç¤åÃv

Analysis of EEG Frequency Bands for Envisioned Speech Recognition

•²øÞm¥Á

Enhanced Classification of Gastric Lesions and Early Gastric Cancer Diagnosis in Gastroscopy Using Multi-Filter AutoAugment

•¼Ú«í¸Î

A survey of music emotion recognition

3¤ë6¤é

13:30-15:00

¤u¾Ç°|1FºtÁ¿ÆU

¼B¨|ºû

§d­Y¤Z

±i¹Åªå

±i爲¶¶

ªL¥ú¨°

ªL¸q¾±

•¼B¨|ºû

On using Deep Reinforcement Learning to dynamically derive

•§d­Y¤Z

Samba Semantic Segmentation of Remotely Sensed Images with State Space Model

•±i¹Åªå

Hybrid quantum linear equation algorithm and its experimental test on IBM Quantum Experience

•±i爲¶¶

Unleashing the Potential of Conversational AI Amplifying Chat-GPT¡¦s Capabilities and Tackling Technical Hurdles

•ªL¥ú¨°

FLTrust: Byzantine-robust Federated Learning via Trust Bootstrapping

•ªL¸q¾±

Automatic Digitization of Engineering Diagrams using Deep Learning and Graph Search

3¤ë13¤é

13:30-15:00

¤u¾Ç°|1FºtÁ¿ÆU

ÃC¥ç¨j

³¯ÅV

ù®mÞ³

¤×¬f²»

½²©ö°a

•ÃC¥ç¨j

A-MEM Agentic Memory for LLM Agents

•³¯ÅV

Forecasting migraine with machine learning based on mobile phone diary and wearable data

•ù®mÞ³

¨ã¦³¥i½Õ¦¡¬Û¦ì¡BÂùÀW©M¼eÀW¤Ú¯S´µ°Ç¯x°}³]­p

•¤×¬f²»

Machine learning prediction of antiviral_HPV protein interactions for anti_HPV pharmacotherapy

½²©ö°a

Genetic Auto-prompt Learning for Pre-trained Code Intelligence Language Models

3¤ë20¤é

13:30-15:00

¤u¾Ç°|1FºtÁ¿ÆU

±i«Ê·~

ªL·qÄ_

³°«Û§Ê

Á©þ§Ê

³¯§ÓºÍ

ªLÄm°ó

±i«Ê·~

A Fast Latent Factorization of Tensors Model for Imputation of Missing Value in Water Quality Data

ªL·qÄ_

An Experimental Study of Low-Latency Video Streaming over 5G

³°«Û§Ê

Emotion-Aware Music Recommendation

Á©þ§Ê

Concise and interpretable multi-label rule sets

³¯§ÓºÍ

Deepfake Audio Detection Using Spectrogram-based Feature and Ensemble of Deep Learning Models

ªLÄm°ó

Reliability_and_Delay_Analysis_of_3-Dimensional_Networks_With_Multi-Connectivity_Satellite_HAPs_and_Cellular_Communicat

3¤ë27¤é

13:30-15:00

¤u¾Ç°|1FºtÁ¿ÆU

¤Kºû´¼¯àªÑ¥÷¦³­­¤½¥q

¹w´ú¤ÀªR³¡ªù

ÂŰê¸Û ³Bªø

¼Æ¾Ú¤ÀªR¾³õ¸gÅç¤À¨É

4¤ë3¤é

13:30-15:00

¤u¾Ç°|1FºtÁ¿ÆU

©ñ°²

4¤ë10¤é

13:30-15:00

¤u¾Ç°|1FºtÁ¿ÆU

´Á¤¤¦Ò

´Á¤¤¦Ò

4¤ë17¤é

13:30-15:00

¤u¾Ç°|1FºtÁ¿ÆU

³\µúµ¤

§õª÷¿o

Ĭ¸tµû

¸¯¬R½å

·¨¦Wªä

³¯ª³©É

¸¯¬R½å

An_explainable_data_driven

•Ĭ¸tµû

What Makes Good Examples for Visual In-Context Learning

§õª÷¿o

Energy-Adaptive Real-time Sensing for Batteryless Devices

•·¨¦Wªä

HEPM High-efficiency pattern mining

³¯ª³©É

Minimalist Beige Brand Guidelines Presentation

•³\µúµ¤

Energy-Efficient_Service-Aware_Multi-Connectivity_Scheduler_for_Uplink_Multi-Layer_Non-Terrestrial_Networks

4¤ë24¤é

13:30-15:00

¤u¾Ç°|1FºtÁ¿ÆU

Áڴˬì§ÞªÑ¥÷¦³­­¤½¥q

ªL©ú¥¿ ²£«~³¡ ¸g²z

5¤ë1¤é

13:30-15:00

¤u¾Ç°|1FºtÁ¿ÆU

­ðºÍ¿o

³\¹ÅÅã

Á§±R¥¿

ªô¹t·ì

³¯¬f¿Î

¶ÀÄ£°¥

5¤ë8¤é

13:30-15:00

¤u¾Ç°|1FºtÁ¿ÆU

°ê¥ß¤¤¿³¤j¾Ç

¸ê°TºÞ²z¾Ç¨t

­^®a¼y ±Ð±Â

5¤ë15¤é

13:30-15:00

¤u¾Ç°|1FºtÁ¿ÆU

°ê¥ß¦¨¥\¤j¾Ç

¸ê°T¨t / »s³y©Ò

³¯´Â¶v ±Ð±Â

5¤ë22¤é

13:30-15:00

¤u¾Ç°|1FºtÁ¿ÆU

°ê¥ß¦¨¥\¤j¾Ç

´ú¶q¤ÎªÅ¶¡¸ê°T¾Ç¨t

§f¾Ç®i ±Ð±Â

5¤ë29¤é

13:30-15:00

¤u¾Ç°|1FºtÁ¿ÆU

ºØ¤l±Ð®v¬ã²ß

«H¸Ûª÷¿Ä¬ì§ÞªÑ¥÷¦³«H¤½¥q

°õ¦æªø­Ý³Ð¿ì¤H  ¸­«H©M

ºØ¤l±Ð®v¬ã²ß

6¤ë5¤é

13:30-15:00

¤u¾Ç°|1FºtÁ¿ÆU

ºØ¤l±Ð®v¬ã²ß

°ª¶¯Âå¾Ç¤j¾Ç

Âå°ÈºÞ²zº[ÂåÀø¸ê°T¾Ç¨t

ÃQ¬K©ô ±Ð±Â

´¼¼zÂåÀøªºµo®i»P¬ã¨s

6¤ë12¤é

13:30-15:00

¤u¾Ç°|1FºtÁ¿ÆU

´Á¥½¦Ò

½T»{¤À¼Æ